Цифровая платформа по разработке и применению цифровых двойников CML-Bench®
Уникальный онлайн-курс «Цифровые двойники изделий»
Hi-Tech новости 1 Мая 2012 года
Данная новость была прочитана 4702 раза

Корабелы Выборгского судостроительного завода (ВСЗ) работают над тренажерным комплексом НИТКА, предназначенным для отработки пилотами техники взлета/посадки на авианосец

Логотип ОАО

ОАО «Выборгский судостроительный завод» приступило к следующему этапу строительства составной части тренажерного комплекса типа НИТКА.

В апреле 2012 года специалисты монтажного цеха приступили к сборке металлоконструкций в объем непосредственно на месте монтажа.

НИТКА представляет собой специальный наземный учебно-тренировочный комплекс, который имитирует палубу авианосца. Основное его предназначение – отработка пилотами техники взлета/посадки самолетов на авианосец.

Корабелы

Кроме того, в марте 2012 года ОАО «Выборгский судостроительный завод» заключил контракт с ОАО «Пролетарский завод» на выполнение работ по следующей составной части тренажерного комплекса.

Согласно контракту, ВСЗ выполнит работы по изготовлению, транспортировке и монтажу металлоконструкций блока аэрофинишеров (БАФ). В настоящее время закуплен металл, проводится закупка лакокрасочных и иных материалов, идут работы по подготовке производства. Начало резки металла запланировано на май 2012 года.

Корабелы

 

Справка

НИТКА в Википедии – свободной энциклопедии.

Публикация подготовлена сотрудниками CompMechLab® по материалам сайта «и-Маш».

Комментарий FEA.ru. Сотрудниками CompMechLab® ранее с целью полномасштабного моделирования аэрофинишеров взлетно-посадочного комплекса тяжелых авианесущих крейсеров (ТАКР) «Адмирал Горшков» и «Адмирал Кузнецов» были разработаны уникальные математические и конечно-элементные модели палубного аэрофинишера, предназначенного для посадки самолетов на палубу авианосца.

Основные исходные характеристики для описания динамического процесса:

  • скорость подлетающего самолета ~ 200 – 240 км/час;
  • масса подлетающего самолета ~ 20 – 30 т;
  • время торможения самолета на палубе – до 3 секунд;
  • пробег («путь торможения») самолета по палубе – менее 100 м;
  • перегрузки, испытываемые летчиком при посадке на палубу ~ 5 – 6 g.

Посадка истребителя Су-33 на ТАВКР
Посадка истребителя Су-33 на ТАВКР «Адмирал Кузнецов»

Уникальная полномасштабная математическая модель палубного аэрофинишера разработана на основе эффективного комплексирования и применения коммерческих версий передовых программных систем конечно-элементного анализа (ANSYS Mechanical, ANSYS CFX,  LS-DYNA, MSC.ADAMSSolidWorks и др.)  и специализированного CompMechLab-in-house software, позволившего реализовать отсутствующие в CAE-системах возможности, которые принципиально важны для эффективного решения данной задачи.

3D CAD-модель аэрофинишера
Общий вид полномасштабной компьютерной модели аэрофинишера

Разработанные модели, в частности, по запросам Генеральной прокуратуры РФ, Военной прокуратуры Северного флота, Государственной комиссии по расследованию авиационных происшествий нашли широкое применение в расследовании авиационного происшествия, когда 5 сентября 2005 года в Северной Атлантике «после касания самолетом палубы корабля и зацепа в процессе торможения во второй половине пробега произошел обрыв тормозного троса, в результате чего самолет скатился с палубы, упал в море и затонул на глубине 1100 метров» (по материалам многих источников, например, Newsru.com).

На сайте FEA.ru в разделах Выполненные работы и AVI-Галерея представлены фрагменты нескольких работ, выполненных сотрудниками CompMechLab® по данной тематике:

Конечно-элементное моделирование динамических процессов, возникающих при посадке истребителя на палубу авианосца (палубный аэрофинишер)


Цель цикла выполненных НИОКР – создание на базе современных CAD/CAE технологий (программных систем проектирования и инженерного анализа) уникальных математических и конечно-элементных моделей аэрофинишера. Разработанные в рамках НИОКР модели позволяют:
  – рассчитывать динамические характеристики как тормозного устройства (палубного аэрофинишера), так и самолета;
  – определять чувствительность всей системы к изменению конструкционных и эксплуатационных параметров, соответственно, выполнять "тонкую настройку" всех систем аэрофинишера ;
  – рассчитывать нагрузки, действующие на пилота истребителя;
  – осуществлять многопараметрическую комплексную оптимизацию характеристик тормозного устройства.

Нажмите для просмотра

 

Палубный аэрофинишер. CFD анализ клапана управления системы гидравлического торможения

Цель работы – создание численной модели клапана управления, учитывающей все геометрические особенности конструкции, для определения его гидравлических характеристик. Результаты работы - поля скоростей и давлений в дросселирующей части клапана управления, зависимости гидравлических потерь от расхода потока на входе и от положения поршня клапана.

Некоторые CompMechLab®-публикации по теме:

  • Mikhaluk D., Voinov I., Borovkov A. Finite Element Modeling of the Arresting Gear and Simulation of the Aircraft Deck Landing Dynamics // Proc. 7th European LS-DYNA Conference. 2009, Salzburg, Austria, 10p.
    Summary. Deck arresting gear is a special aerocarrier unit that is destined to provide efficient arrest of deck jetfighters with high deck landing speed (200 – 240 km/h). Arresting gear is a hydraulic plunger brake connected with takeup cable stretched across the deck, through the multiple block and tackle and spring damper elements. Jetfighters deck landing is one of the most complex and critical parts of the flight. It requires failurefree operation of the arresting gear system and skilled actions of the pilot. One of the factors that influences safety of the deck landing is the strength of the arresting gear structural elements and optimal “tuning” of the system for the arrest of the jetfighter with specific mass moving with specific velocity. In the current work a fullscale dynamic model of the deck arresting gear is created. It contains all basic elements of the real prototype and used to analyze the dynamic behavior of the arresting gear and tune it for specific conditions of the arrest. Main elements of the arresting gear are the cable and the hydraulic braking machine. The cable consists of two parts – takeup cable and braking cable. During deck landing the jetfighter grasps the takeup cable with a hook. The takeup cable is coupled with the braking cable that is designated to transfer jetfighter pull to the hydraulic braking machine. The latter is represented by hydrocylinder and accumulator where the kinetic energy of the fighter is transferred to the heat and then dissipated. The dynamic analysis was performed with use of LS-DYNA software. Standard capabilities of LS-DYNA do not enable performing adequate simulation of such complex nonlinear system, because due to feedback control system, some characteristics of the braking machine vary with change of other parameters. By that reason special software was developed that allows managing LS-DYNA and automatically run the process with multiple restarts. Developed dynamic model is used to obtain main parameters of the arresting process – change of the fighter displacement, velocity, acceleration vs. time, as well as pressure in the hydraulic elements of the braking machine.
     
  • Войнов И.Б., Михалюк И.Б., Боровков А.И. Разработка и применение расчетной схемы работы тормозной машины палубного аэрофинишера // Научно-технические ведомости СПбГПУ. СПб.: Изд. СПбГПУ. 2008. №4. 61 68.
    Аннотация. Представлено описание конструкции палубного аэрофинишера и приведен принцип его работы. Разработана расчетная схема, позволяющая быстро вычислить тормозное усилие, возникающее в гидравлической системе тормозной машины. Разработанная методика внедрена в полномасштабную конечно-элементную модель аэрофинишера и использовалась при моделировании посадок самолетов. Результаты моделирования показали хорошее совпадение с натурным экспериментом.

  • Немов А.С., Войнов И.Б., Боровков А.И. Расчетное определение жесткостных характеристик кабелей с иерархической структурой // Научно-технические ведомости СПбГПУ. СПб.: Изд. СПбГПУ. 2008. № 4. 21 27.
    Аннотация. Рассмотрены два подхода к исследованию механического поведения кабеля: аналитические оценки (использующие теорию растяжения и кручения кабеля) и прямое решение для кабеля задачи механики деформируемого твердого тела с помощью метода конечных элементов.

  • Mikhaluk D., Voinov I., Borovkov A. Finite Element Modeling of the Arresting Gear and Simulation of the Aircraft Deck Landing Dynamics. Proc. 6th EUROMECH Nonlinear Dynamics Conf. (ENOC'2008). St.Petersburg, Russia. 2008. 5p.
    Abstract.
    In the current work a full-scale dynamic model of the deck arresting gear is developed. Arresting gear is a special aero-carrier unit that is destined to provide efficient arrest of deck jet-fighters with high deck landing speed (200-240 km/h). It consists of a hydraulic plunger brake connected with take-up cable stretched across the deck, through the multiple block-and-tackle and spring-damper elements. The developed numerical model contains all basic elements of the real prototype and used to analyze the dynamic behavior of the arresting gear and tune it for specific conditions of the arrest.

  •  

    Боровков А.И., Войнов И.Б., Михалюк Д.С., Климшин Д.В., Закиров О.А. Конечно-элементное моделирование и исследование динамического поведения палубного аэрофинишера при посадке самолетов // Труды СПбГТУ, № 498. Вычислительная математика и механика. СПб. Изд-во СПбГПУ. 2006. 110 – 123.

     

  • Боровков А.И., Войнов И.Б. Конечно-элементное определение гидравлического сопротивления трубопроводов тормозной системы демпфирующего устройства // Труды Шестой Межд. конф. “Математическое моделирование физических, технических, экономических, социальных систем и процессов”. – Ульяновск: УлГУ, 2005. 152 –159.

Ссылки по теме:

2012.04.12 "Пролетарский завод" отгрузил аэрофинишеры для индийского наземного тренировочного комплекса на авиабазе Ханса
2012.03.24. Министерство обороны РФ подписало контракты с компаниями "Сухой" и "РСК "МиГ" на поставку 92 фронтовых бомбардировщиков Су-34 и 20 корабельных истребителей МиГ-29 К/КУБ
2012.03.05. Россия работает над перспективным многосредным авианосцем
2012.01.20. Испытатели нашли у истребителя F-35 Lightning II много технических недоработок
2011.12.24. Истребители Су-33 авианесущего крейсера Северного флота «Адмирал Кузнецов» начали учебно-боевые полеты. Видеорепортаж с учений
2011.12.20. ВМФ России определился со строительством авианосных групп. Минобороны России заказало у Объединенной судостроительной корпорации (ОСК) разработку аванпроекта перспективного авианесущего крейсера. О работах CompMechLab® в области конечно-элементного моделирования динамики палубных аэрофинишеров
2011.12.19. Американская компания DigitalGlobe сфотографировала первый китайский авианосец «Ши Лан» (бывший «Варяг») во время ходовых испытаний. Россия отказалась продать Китаю аэрофинишеры, для которых полномасштабное математическое и компьютерное моделирование выполняют сотрудники CompMechLab НИУ СПбГПУ 
2011.12.03. К 2014 году американский БПЛА X-47B получит систему автоматической дозаправки в воздухе
2011.04.20. ВМС США будут управлять палубным беспилотником при помощи мыши
2011.02.09. Китай построил «бетонный авианосец»
2009.02.28. CompMechLab Hi-Tech Review. Авианосцы России и Индии
2008.09.18 Корабельный истребитель СУ-33: 10 лет на вооружении Российской армии
2008.03.23 РСК «МиГ» объявила об успешном полете первого серийного МиГ-29КУБ
2008.01.22 В Атлантическом океане проходят учения с участием авианосца «Адмирал Кузнецов»
2007.11.23 Франция и Великобритания будут строить авианосцы
2007.09.11 Япония построила первый в своей послевоенной истории полноценный авианосец
2007.08.09 Великобритания приступает к созданию двух новых авианосцев
2007.06.03 Россия построит новый авианосец